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Recognizer = Recognizer = 
Acoustic model + GrammarAcoustic model + Grammar

� (Declarative information in recognizer…)
� Acoustic model describes the structure of 

the sounds
– Beyond the scope of this talk…

� We are interested in grammars



The role of grammars in a The role of grammars in a 
spoken dialogue systemspoken dialogue system

� Grammars provide both
– Filter on recognition: defines what system can 

hear, reduces search
– Defines what semantic structures are associated 

with which pieces of language



Standard methods for building Standard methods for building 
speech recognition grammarsspeech recognition grammars
� Statistical language models

– Need a lot of training data
– Don’t produce any data structures

� Hand coded context-free grammars (CFGs)
– Labor intensive 
– Hard to maintain



Unification grammars (UG)Unification grammars (UG)
� “Parameterised CFGs”
� Example:

– CFG representation
� NP_SG � D_SG, N_SG
� NP_PL � D_PL, N_PL

– UG representation
� NP:[num=X] � D:[num=X], N:[num=X]



Previous work: compilersPrevious work: compilers

� Gemini (Moore, Gawron, Dowding)
– CommandTalk, Personal Satellite Assistant, WITAS…

� EPFL compiler (Chapellier, Rajman et al)
– EPFL directory inquiry system 

� HPSG2CFG (Kiefer and Krieger) 
– Not used in implemented speech system (?)

� Regulus 1 (Rayner, Hockey, Dowding)
– On/Off House, MedSLT 1, Franco

� Uniance (Bos)
– IBL



Limitations of previous workLimitations of previous work

� Domain-specific unification grammars 
– (All systems except Kiefer & Krieger) 
– New grammar needed for each domain
– Not easy to port grammars

� (Kiefer and Krieger) 
– Can compile general unification grammars
– Unclear whether resulting CFG grammar can 

be used in recognizer



The The RegulusRegulus programprogram

� Write a single application-independent unification 
grammar

� Derive application-specific unification grammars 
using example-based methods and small corpora

� Compile specialized unification grammars into 
CFG language models 

� Good performance of recognizers on real tasks
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The The Regulus Regulus systemsystem

� Open Source platform compatible with 
Nuance recognizer

� Integrated development environment
� Has been used to build several non-trivial 

apps
– Clarissa astronaut assistant, MedSLT translator



Key questions about Key questions about RegulusRegulus

� How does it work?
� How does it scale up?
� How does it compare to alternatives?
� How do you use it?
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Unification grammar Unification grammar �� CFGCFG

� Basic idea
– Exhaustively expand rules
– Filter results to remove useless rules

� Refinements
– Efficient filtering
– Interleaving of expansion and filtering
– Pre-processing of grammar 
– Grammar compaction
– Semantics



Exhaustive expansionExhaustive expansion

� Each feature in unification grammar has 
defined finite range of values

� Instantiate each feature to each of its 
possible values

� Problem: combinatoric explosion



Example unification grammarExample unification grammar

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=X]
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats



Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
SIGMA:[] � NP:[num=pl]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl] 
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats



(Normal CFG notation…)(Normal CFG notation…)

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG, N_SG
NP_PL � D_PL, N_PL 
D_SG � this
D_PL � these
N_SG � cat
N_PL � cats



FilteringFiltering

� Some expanded rules may be irrelevant
� Top down filtering

– Rules irrelevant because they don’t connect to 
the top-level rule

� Bottom up filtering
– Rules irrelevant because they don’t connect to 

the lexicon



Example of topExample of top--down filteringdown filtering

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=sg] 
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats



Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats



Filtered grammarFiltered grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
D:[num=sg] � this
N:[num=sg] � cat



Example of bottomExample of bottom--up filteringup filtering

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=X]
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
N:[num=sg] � cat



Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
SIGMA:[] � NP:[num=pl]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl]
D:[num=sg] � this
N:[num=sg] � cat



Filtered grammarFiltered grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
D:[num=sg] � this
N:[num=sg] � cat



Efficient filteringEfficient filtering

� Want filtering time to be linear in #rules
� Top-down filtering is easy

– Just propagate down from the root category

� Bottom-up is less trivial
– Obvious algorithm is quadratic time



LinearLinear--time bottomtime bottom--up filteringup filtering

� Linear-time bottom-up filtering is possible
� Corollary of result by Dowling & Galliers

– Good concise explanation in Russell & Norvig

� Key idea: make bottom-up filtering into a 
marker-passing process

� Actually not quite linear in our 
implementation … O(n log(n))



BottomBottom--up filtering methodup filtering method

� “Supported non-terminal N”
– Def: can generate at least one string from N
– Base case: there is a lexical entry for N

� “Missing support for rule R”
– Def: # unsupported non-terminals in RHS of R
– Decrement missing support if non-terminal becomes 

supported
– Rule is supported if missing support = 0

� Non-terminal on LHS becomes supported

� Algorithm
– Percolate supported non-terminals upwards



ExampleExample

1 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
2 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl] 
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support



ExampleExample

1 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
0 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl] 
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support



ExampleExample

0 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
0 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl] 
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support



Timings for bottomTimings for bottom--up filteringup filtering

0.07 msecs/rule117811

0.06 msecs/rule18880

0.06 msecs/rule4037

0.05 msecs/rule2966

0.06 msecs/rule1132

Time/Rule (msecs)# Rules



Interleaving of expansion and Interleaving of expansion and 
filteringfiltering

� #Expanded rules exponential in #features
� May run out of space before we can filter
� Solution: interleave expansion and filtering

– Expand using subset of features
– Filter
– Iterate until all features have been expanded



Importance of interleaved Importance of interleaved 
expansion and filteringexpansion and filtering

� Try compiling without interleaving
� Increase number of features in grammar

(exceeded resource limits)40
99.9108621093338
5.310825684936
0.7468202730
0.238877120
0.136441210

Time (secs)
No interleaving

#Rules after 
filtering

#Rules before 
filtering

#Features



PrePre--processing of grammarsprocessing of grammars

� Can reduce size of expanded CFG grammar 
by pre-processing unification grammar

� Two transforms currently used
– Singleton variable elimination
– Binarization



Singleton variable eliminationSingleton variable elimination

� “Singleton variables” can be optimized
� Example: transitive VP rule

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=trans],
NP:[num=ObjNum, gender=Gen]

Expands to 2 x 2 x 2 = 8 CFG rules

ObjNum and Gen are singleton variables



Singleton variable eliminationSingleton variable elimination

Transformed version:

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=trans],
NP:[num=any, gender=any]

NP:[num=any, gender=any] �
NP:[num=Num, gender=Gen] 

Expands to 2 + 2 x 2 = 6 CFG rules



BinarizationBinarization

� Rules with many daughters cause problems
– Number of generated CFG rules is exponential 

in number of daughters

� Solution: apply a binarization transform
– In binarized grammar, rules have ≤ 2 daughters



BinarizationBinarization

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=ditrans],
NP:[num=IndObjNum],
NP:[num=ObjNum]

��������

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=ditrans],
TMP1:[num1=IndObjNum, num2=ObjNum]

TMP1:[num1=IndObjNum, num2=ObjNum] �
NP:[num=IndObjNum],
NP:[num=ObjNum]



Grammar compactionGrammar compaction

� Can also apply CFG � CFG transforms to 
simplify resulting grammar

� Probabilistic training of CFG grammar 
works better on smaller grammar
– Fewer rules means fewer parameters to train

� With large grammars, can reduce size of 
CFG grammar by over 90%

� Method described in (Dowding et al 2001)



Grammar compactionGrammar compaction

� Three transforms, applied repeatedly until 
fixpoint is reached
– “Absorbing”: If non-terminal N occurs as LHS 

in just one rule, and RHS is all terminals, 
replace N everywhere with RHS 

– “Duplicate rules”: Remove duplicated rules
– “Duplicate rule groups”: If the sets of rules for 

non-terminals N1 and N2 are the same, replace 
N2 everywhere with N1



ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG N_SG
NP_PL � D_PL N_PL
D_SG � the D_SG � some
D_PL � the D_PL � some
N_SG � sheep
N_PL � sheep



ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG N_SG
NP_PL � D_PL N_PL
D_SG � the D_SG � some
D_PL � the D_PL � some
N_SG � sheep (ABSORB)
N_PL � sheep (ABSORB)



ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG sheep
NP_PL � D_PL sheep
D_SG � the  D_SG � some (DUPLICATE)
D_PL � the  D_PL � some  (DUPLICATE)



ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D sheep (DUPLICATE)
NP_PL � D sheep (DUPLICATE)
D � the  D � some



ExampleExample

SIGMA � NP (DUPLICATE)
SIGMA � NP (DUPLICATE)
NP � D sheep
D � the  D � some



ExampleExample

SIGMA � NP
NP � D sheep
D � the  D � some



SemanticsSemantics

� Different possible approaches to semantics
� Approach 1(more general)

– Compile plain CFG grammar
– Reparse recognized words with unification 

grammar to get semantics
� Approach 2 (more efficient)

– Compile annotated CFG grammar
– Get semantics directly from recognizer



Using recognizer semanticsUsing recognizer semantics

� Grammar Specification Language (GSL)
� Can build structured representations

– Ordered lists
– Attribute-value structures

� Can map restricted unification grammar 
semantics into GSL
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Approximation using grammar Approximation using grammar 
specializationspecialization

� Large linguistically motivated grammars 
hard to compile
– (Would be underconstrained anyway…)

� Use corpus-based grammar specialization to 
extract a reduced domain grammar

� Compile domain grammar into CFG



The general English grammarThe general English grammar

� Loosely based on SRI Core Language 
Engine grammar

� ~175 unification grammar rules
� ~75 features
� Core lexicon, ~ 450 words



Overview of coverage Overview of coverage 
(clauses)(clauses)

� Clause types: declarative, Y-N questions, WH-
questions, imperatives

� WH-movement of NPs, PPs, ADJPs and ADVPs
� Passives
� Impersonal subjects
� Embedded WH- and Y-N questions
� Relative and subordinate clauses
� Large number of sub-categorization types
� Adverbs



Overview of coverage Overview of coverage 
(NPs and (NPs and PPsPPs))

� Conjunction of NPs, PPs, ADJPs and DETs
� Post-modification of NPs by PPs, ADJPs, relative 

clauses
� Pronouns
� Possessives
� Bare DETs as NPs
� Complex DETs
� Date, time and number expressions
� NPs as temporal adverbials



Grammars built so farGrammars built so far

� Personal Satellite Assistant 
� Home Automation
� Travel Deals
� Medical Speech Translator
� Intelligent Procedure Assistant
� Mobile Agents



Examples of coverage: Examples of coverage: 
Personal Satellite Assistant Personal Satellite Assistant 

(PSA)(PSA)
� Affirmative
� Go to flight deck
� Mid deck and lower deck
� Measure pressure
� What were oxygen and pressure one minute ago
� When did the temperature reach twenty degrees
� Go to the crew hatch and close it
� Close all three doors



Examples of coverage: Examples of coverage: 
Home Automation (HA)Home Automation (HA)

� Is there a tv in the living room
� Which devices are turned on
� Turn on the kitchen light and the stove
� Dim the light to fifty percent
� Thank you



Examples of coverage: Examples of coverage: 
Travel Deals (TD)Travel Deals (TD)

� Holidays in paris under two hundred pounds
� I want something leaving from stansted
� In spain during may or june from gatwick
� Is there anything in italy before may tenth
� Give me a winter brochure
� Do you have three star or four star



Examples of coverage: Examples of coverage: 
Medical Speech Translator Medical Speech Translator 

(MST)(MST)
� Do you often have headaches in the morning?
� Is the pain usually in the front of your head?
� Does the pain spread to your shoulder?
� Does red wine give you headaches?
� Are the headaches relieved by stress removal?
� How severe are the headaches?
� Is the frequency of your headaches increasing?



Examples of coverage: Examples of coverage: 
Intelligent Procedure Assistant Intelligent Procedure Assistant 

(IPA)(IPA)
� Next step
� Go back
� Go to step three point two
� No I said go to step five
� Set alarm for twelve minutes from now
� Record a voice note on step seven
� Delete voice note on step four point one
� Increase volume
� Say that again



Examples of coverage: Examples of coverage: 
Mobile Agents (MA)Mobile Agents (MA)

� Take a picture of me
� Boudreaux follow me now
� Return to the hab
� Start tracking my physiological sensors



Grammar specialization: Grammar specialization: 
Explanation Based LearningExplanation Based Learning

� Macro-rule learning
� Corpus-based flattening of parsed examples 

to produce “larger” rules
� Learned grammar’s coverage is strict subset 

of original grammar’s coverage
� Coverage loss usually not serious

– Specialized grammar often better in practice



Rule derivation using EBLRule derivation using EBL
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ScalabilityScalability

� How does it scale
– … as general grammar gets bigger?
– … as training set gets bigger?



Scalability with respect to size Scalability with respect to size 
of general grammarof general grammar

� General grammar built up by successively 
merging grammars for different applications

� Rationally reconstruct versions of general 
grammar for increasing numbers of 
applications

� Measure performance of PSA recognizers 
derived from increasingly large grammars



Data set usedData set used

� Personal Satellite Assistant data set
– Collected in user tests of system
– 10513 utterances (5394 training, 5169 test)
– 38943 words
– 27 speakers



Parameters measuredParameters measured

� Compile-time
– Time to perform grammar specialization
– Time to perform UG � CFG compilation
– Number of nodes in Nuance recognizer package

� Run-time
– Word error rate (WER)
– Proportion of utterances rejected (REJ)
– Word error rate on non-rejected utterances (AWER)
– Recognizer speed as multiple of real-time (xRT)



Sizes of different versions of Sizes of different versions of 
general grammargeneral grammar

68145PSA, HA, TD, MST, IPA, MA5
68139PSA, HA, TD, MST, IPA4
64127PSA, HA, TD, MST3
56106PSA, HA, TD2
4674PSA, HA1

#Feats#RulesApplicationsVersion



Scalability Scalability wrt wrt size of general size of general 
grammar: compilegrammar: compile--time figurestime figures
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Scalability Scalability wrt wrt size of general size of general 
grammar: size of recognizergrammar: size of recognizer
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ScalabilityScalability wrtwrt size of general size of general 
grammar: rungrammar: run--time figurestime figures
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Scalability with respect to size Scalability with respect to size 
of training setof training set

� Train specialized grammars for PSA 
application

� Increase size of training set used to carry 
out grammar specialization



Scalability Scalability wrtwrt size of training size of training 
set: compileset: compile--time figurestime figures

0

50

100

150

200

250

300

350

400

450

250 500 1000 2500 5000

No. of Examples

C
om

pi
la

tio
n 

Ti
m

e 
(s

ec
)

EBL UG2CFG



ScalabilityScalability wrtwrt size of training size of training 
set: recognizer size set: recognizer size 
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ScalabilityScalability wrtwrt size of training size of training 
set: runset: run--time figurestime figures
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Summary of first halfSummary of first half

� Overview
� Compiling unification grammars into 

speech recognizers
– Unification grammar � CFG

� Basic idea: exhaustive expansion
� Refinements: interleaving, pre-processing…

– Approximation using grammar specialization
– Scalability
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Comparison of specialized Comparison of specialized 
versus handversus hand--coded language coded language 

modelsmodels
� Mobile Agents data
� Hand-coded grammar heavily optimized

– Most challenging target for comparison
– 60-70 rules, 2 weeks to build

� Specialized grammar done in one day
– Mostly adding application-specific lexical items
– Six grammar rules added



Training and Test materialTraining and Test material

� From September 2002 field test of Mobile 
Agents system

� 608 utterances (485 training, 123 test)
� 3535 words
� 8 speakers



Parameters measuredParameters measured

� Word error rate (WER)
� Proportion of utterances rejected (REJ)
� Word error rate on non-rejected utterances 

(AWER)
� Recognition speed as multiple of real-time 

(xRT)



Comparison of specialized Comparison of specialized 
versus handversus hand--coded language coded language 

modelsmodels
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Why is the Why is the specialisedspecialised version version 
better?better?

� Specialization process tunes grammar 
efficiently
– Faster recognition speed
– Hand-tuning very time-consuming

� General grammar already covers many 
marginal constructions
– Low-frequency constructions not always 

covered by hand-coded grammar
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� Overview
� Compiling unification grammars into 

speech recognizers
� Comparison of REGULUS and other 

methods
– Comparison with hand-built grammars
– Comparison with statistical/robust methods

� Using REGULUS



Comparison with Comparison with 
statistical/robust methodsstatistical/robust methods

� Build two versions of a system
� Compare performance
� Try to make comparison as fair as possible



System: Medical speech System: Medical speech 
translatortranslator

� Open Source system built using Regulus
– http://sourceforge.net/projects/medslt

� Limited-domain medical speech translation
� Doctor-patient examination domain
� One-way dialogue

– Doctor can abort if recognition is bad 
– Patient responds non-verbally



Examples of coverageExamples of coverage

� Do you often have headaches in the morning?
� Is the pain usually in the front of your head?
� Does the pain spread to your shoulder?
� Does red wine give you headaches?
� Are the headaches relieved by stress removal?
� Is the headache ever severe?
� Is the frequency of your headaches increasing?



Regulus Regulus (GLM) version(GLM) version

� Recognizer built using EBL grammar 
specialization

� Rule-based interlingual translation
� Regulus-based text generation
� TTS/concatenated wavfile speech output



Robust (SLM) versionRobust (SLM) version

� SLM-based recognizer
� Robust phrase-spotting parser
� Same translation module as in GLM version
� Same generation module as in GLM version
� Same speech output as in GLM version



Methodological issuesMethodological issues

� Comparing a grammar-based recognizer 
with an SLM-based recognizer
– Regulus lets us train the grammar-based version 

off the same data as the SLM

� Fair evaluation criteria
– Evaluate on task performance, not artificial 

“semantic accuracy”



Training and test dataTraining and test data

� Training data
– 450 text utterances written by developers

� Test data
– 524 spoken utterances collected from simulated 

use scenarios



ExperimentsExperiments

� Process test data through both versions
� Judge recognition output for abort/accept
� Judge translations for accepted utterances

– Three-point scale: good, ok, bad
– Compare results across three judges



SER and WER in SLM and SER and WER in SLM and 
GLM versionsGLM versions
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Breakdown of examples Breakdown of examples 
translated by SLM and GLMtranslated by SLM and GLM
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Quality of translation with Quality of translation with 
GLM versionGLM version
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Quality of translation with SLM Quality of translation with SLM 
versionversion
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Quality of translation: Quality of translation: 
Comparison of GLM and SLM Comparison of GLM and SLM 
(translation (translation judgementsjudgements: averages): averages)

0

20

40

60

80

100

120

140

160

GLM SLM

Good Okay Bad



Interpretation of resultsInterpretation of results

� WER much better for SLM version
– SER about the same

� Failed translations much more frequent
� Bad translations much more frequent

– Many more translations all judges agree are bad



Why is the GLM better?Why is the GLM better?

� Robustness doesn’t help very much
– “All or nothing” domain

� SLM version is much less predictable
– Poor user experience
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Speech Translation System Speech Translation System 
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RegulusRegulus componentscomponents and and 
functionsfunctions

� Development environment
� Regulus � Nuance compiler
� Grammar specializer
� General grammars
� Parser generator
� Generator generator

Toy1

Toy1Specialized

ToySLT



Toy1: Building a recognizerToy1: Building a recognizer
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Category DeclarationsCategory Declarations

� Format
category(CategorySymbol, [FeatureList]).

� Examples
– Top level category

top_level_category('.MAIN').
category('.MAIN', [gsem]).

– Lexical and phrasal categories
category(yn_question, [sem]).
category(noun, [sem, number, sem_np_type]).



FeaturesFeatures

� Format
– Feature value spaces

feature_value_space(<ValueSpaceId>, <ValueSpace>).

– Features
feature(<FeatName>, <ValueSpaceID>).

� Examples
feature_value_space(number_value, [[sing, plur]]).
feature(number, number_value).



LexiconLexicon

� Format
<CategorySymbol>:<FeatValList> � lex item

� Examples
noun:[sem=[[device, light]], 

sem_np_type=switchable\/dimmable,   
number=sing] --> light.

verb:[sem=[[action, switch]], vform=imperative,  
vtype=switch, number=sing,
obj_sem_np_type=switchable] --> switch.



Grammar rulesGrammar rules

� Format
Category � List of categories and/or lexical items

� Examples
yn_question:[sem=concat([[type, query]],concat(Verb,

concat(OnOff, Np)))] -->
verb:[sem=Verb, vform=finite, vtype=be, number=N,
obj_sem_np_type=n],
np:[sem=Np, number=N, sem_np_type=switchable],
onoff:[sem=OnOff].



Development environmentDevelopment environment

� Key commands for Toy1
– HELP
– LOAD (Load current Regulus grammar in 

DCG and left-corner form)
– NUANCE (Compile current Regulus grammar 

into Nuance GSL form) 



Toy1: Building RecognizerToy1: Building Recognizer

� UG � GSL in development environment
� UG � GSL using make

– Alternative to doing it in the development 
environment

� Nuance compile
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Integrating with an applicationIntegrating with an application

� Toy1 application
– Uses Regulus speech server
– Minimal implementation of

� Semantic Analysis
� Dialogue Manager
� Output Manager

– Vocalizer TTS
– Command line interface



Using theUsing the Regulus Regulus 
SpeechServerSpeechServer

� Recognition
– Sends back Nuance results in same form as 

Regulus grammar

� Speech output
– Sends request for TTS or for playing recorded 

wavfiles



Semantic AnalysisSemantic Analysis

Recogniser representation: [[type,
command],[action,switch],[onoff,on],
[device,light],[location,kitchen]] 

DM representation:
[command,device(light,kitchen,on,100)].

Language oriented 
semantics

Application oriented 
semantics  



Dialogue ManagerDialogue Manager

initial_state([
device(light, kitchen, off, 0),
device(light, living_room, 
off, 0),
device(fan, kitchen, off, 
0)]).

+
[command,device(light, 

kitchen,on,100)]

Context 
+

Dialogue Move

Context 
+

DM Response

new_state([
device(light, kitchen, on, 100),
device(light, living_room, off, 
0),
device(fan, kitchen, off, 0)]).

+
device(light, kitchen, on, 100)



Output ManagerOutput Manager

� DCG Template Generation

Abstract 
Response

Concrete 
Response

device(light,kitchen,on,100)

"the light in the kitchen is 
on"



Toy1Specialized: Toy1Specialized: 
EBL specializationEBL specialization

General English
UG

EBL
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Specialization resourcesSpecialization resources

� General English Grammar 
� Training Corpus
� Domain Specific Lexicon



General English Grammar (1)General English Grammar (1)
� Features: vform, agr, nform, sem_n_type, 

obj_n_type …

feature_value_space(agr_vals, [[1, 2, 3], [sing,
plur]]).
feature_value_space(vforms, [[base, imperative, 
finite, ing, en, to, none]]).
…
feature(vform, vforms).
feature(agr, agr_vals).
…



General English Grammar(2)General English Grammar(2)
� Lexicon: on, the

p:[sem= @prep_sem(on_date), sem_pp_type=date,
obj_sem_n_type=date] --> on.

d:[sem=the_sing,
agr=sing,wh=n,det_type=def,def=y,prenumber=n] --> 
the.

d:[sem=the_plur,
agr=plur,wh=n,det_type=def,def=y,prenumber=y] --> 
the.



General English GrammarGeneral English Grammar
� Grammar Rules: vp_v_p_np, np_d_n …

vp:[sem= @vp_v_np_p_sem(Verb, NP, P), 
@vbar_feats_for_vp(Feats),
takes_post_mods=y,
gapsin=GIn, gapsout=GOut, elliptical_v=n] -->

vbar:[sem=Verb, subcat=nx0vplnx1, 
@vbar_feats_for_vp(Feats),
obj_sem_n_type=ObjSem, obj_def=Def, obj_syn_type=ObjSynType,
sem_p_type=PSem, elliptical_v=n], 

p:[sem=P, sem_p_type=PSem],
np:[sem=NP, wh=n, nform=normal, sem_n_type=ObjSem,

syn_type=ObjSynType, def=Def, takes_post_mods=n, 
@takes_no_pps, gapsin=GIn, gapsout=GOut, case=nonsubj, 
pronoun=n].



Training CorpusTraining Corpus

� sent('switch on the light').
� sent('switch on the light in the kitchen').
� sent('switch the fan off').
� sent('dim the light in the living room').
� sent('is the light switched on').
� sent('is the light in the kitchen switched 

off').



Development environmentDevelopment environment

� Additional commands for Toy1Specialised
� EBL_LOAD (Load current specialised Regulus grammar in 

DCG and left-corner form)
� EBL_TREEBANK (Parse all sentences in current EBL 

training set into treebank form)
� EBL_TRAIN (Do EBL training on current treebank)
� EBL_POSTPROCESS (Postprocess results of EBL training 

into specialised Regulus grammar)
� EBL_NUANCE (Compile current specialised Regulus

grammar into Nuance GSL form) 
� EBL (Do all EBL processing: equivalent to LOAD, 

EBL_TREEBANK, EBL_TRAIN, EBL_POSTPROCESS, 
EBL_NUANCE) 



Toy1Specialised:  change Toy1Specialised:  change 
corpus = change coveragecorpus = change coverage

� With EBL, coverage can be changed by 
adding or deleting examples from the 
training corpus

� Doesn’t require linguistic expertise



Changing coverage: ExampleChanging coverage: Example

� Edit /Toy1Specialized/corpora/toy1_corpus.pl
� Development Environment-- “EBL” command 

does:
– LOAD
– EBL_TREEBANK
– EBL_TRAIN 
– EBL_POSTPROCESS
– EBL_NUANCE 



ToySLTToySLT: Translation example: Translation example

� Recognizer constructed with Regulus
� Connect to translation application
� Regulus based generation
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Development environmentDevelopment environment

� Additional commands for ToySLT
� LOAD_TRANSLATE (Load translation-related files) 
� TRANSLATE (Do translation-style processing on input 

sentences)
� INTERLINGUA (Perform translation through interlingua) 
� NORMAL_PROCESSING (Do normal processing on input 

sentences)
� LOAD_GENERATION (Compile and load current generator 

grammar)
� GENERATION (Generate from parsed input sentences) 



Integrating an applicationIntegrating an application

� ToySLT application
– Uses Regulus Speech Server
– Minimal translation application

� Source Representation to Interlingua
� Interlingua to Target Representation
� Target Representation to Target Language Using 

Regulus Generation

– Vocalizer TTS



Source Representation to Source Representation to 
InterlinguaInterlingua

[[utterance_type,imp],[tense, 
imperative],[pronoun,you],[action,
switch],[spec,the_sing],[device,
light],[prep,off]]

[[action,switch_off],[device,light],
[type,command]].

Recogniser
Representation

Interlingua
Representation



Interlingua to Target Interlingua to Target 
RepresentationRepresentation

[[action,switch_off],[device,

light],[type,command]].

[[action,éteindre],[device,lampe],

[type,command]].

Interlingua
Representation

Target 
Representation



Target Representation to Target Representation to 
Target Language Target Language 

� Regulus Generation: 
– Generator generator compiles regulus grammar 

into DCG optimized for generation

[[action,éteindre],[device,lampe],
[type,command]].

Target words: "éteignez la lampe"

Target Representation Target Words



The Open Source The Open Source Regulus Regulus 
projectproject

� Where to find it
� Licensing terms
� Platforms/requirements
� Documentation and examples
� Installation



Where to find Where to find RegulusRegulus

� SourceForge www.sf.net
� Regulus Project Summary Page 

http://sourceforge.net/projects/regulus/
– Stable releases available for download
– Link for browsing the cvs repository

� CVS repository
– Can check out current development version



Licensing termsLicensing terms

� Lesser GNU Public License (LGPL)
� Open Source license, BUT …
� … can incorporate Regulus into software 

products without these products becoming 
Open Source
– Different from GLP license



Platforms/requirementsPlatforms/requirements

� Windows 2000/XP, SunOS/Solaris 
– Cygwin recommended if using Windows

� SICStus Prolog version 3.10 or newer
� Nuance 7.0 or newer
� 256 MB or more
� 1 GHz or more recommended



Documentation and examplesDocumentation and examples

� Documentation (in HTML): 
/Regulus/doc/RegulusDoc.htm

� Example grammars/systems: 
/Regulus/Examples

� Toy1
� Toy1Specialised
� ToySLT
� PSA



InstallationInstallation

� Unpack zipfile 
� Set environment variables 
� Install other software if necessary

– SICStus Prolog
– Nuance 
– Cygwin



Summary and conclusions Summary and conclusions 

� Can derive recognizers for multiple applications 
from one general grammar
– Faster development times
– More reusable

� Good scalability properties
� Competitive with

– Hand-coded grammars
– Robust/statistical methods

� Available on Open Source platform
�� Regulus Regulus Book 2005Book 2005


